SUSTAINABILITY

Posted on

Circles_of_Sustainability_image_(assessment_-_Melbourne_2011)

SUSTAINABILITY

 

What is sustainability all about?   How does it impact the planet?   What can I and others do support sustainability and make the planet a better place?

Sustainability generally refers to systems, behaviors and activities aimed at helping to preserve a particular entity or resource. Human sustainability is one category, which involves specific goals, strategies and methods implemented to preserve and improve the quality of human life. Sociological, environmental and resource-based factors contribute to human sustainability

In ecology, sustainability is how biological systems remain diverse and productive. Long-lived and healthy wetlands and forests are examples of sustainable biological systems. In more general terms, sustainability is the endurance of systems and processes. The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture. Sustainability science is the study of sustainable development and environmental science.

Healthy ecosystems and environments are necessary to the survival of humans and other organisms. Ways of reducing negative human impact are environmentally friendly chemical engineering,     environmental resource management and environmental protection. Information is gained from green chemistry, earth science, environmental science and conservation biology. Ecological economics studies the fields of academic research that aim to address human economies and natural ecosystems.

Moving towards sustainability is also a social challenge that entails international and national law, urban planning and transport, local and individual lifestyles and ethical consumerism. Ways of living more sustainably can take many forms from reorganizing living conditions, reappraising economic sectors, to adjustments in individual lifestyles that conserve natural resources.

The word sustainability is derived from the Latin sustinere. Sustain can mean “maintain”, “support” or “endure”. Since the 1980s sustainability has been used more in the sense of human sustainability on planet Earth and this has resulted in the most widely quoted definition of sustainability as a part of the concept sustainable development, “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”  Sustainable development consists of balancing local and global efforts to meet basic human needs without destroying or degrading the natural environment. The question then becomes how to represent the relationship between those needs and the environment.

The simple definition that sustainability is something that improves “the quality of human life while living within the carrying capacity of supporting eco-systems”, though vague, conveys the idea of sustainability having quantifiable limits. But sustainability is also a call to action, a task in progress or “journey” and therefore a political process, so some definitions set out common goals and values. The Earth Charter speaks of “a sustainable global society founded on respect for nature, universal human rights, economic justice, and a culture of peace.” This suggested a more complex figure of sustainability, which included the importance of the domain of ‘politics’.

More than that, sustainability implies responsible and proactive decision-making and innovation that minimizes negative impact and maintains balance between ecological resilience, economic prosperity, political justice and cultural vibrancy to ensure a desirable planet for all species now and in the future. Specific types of sustainability include, sustainable agriculture, sustainable agriculture or ecological economics Understanding sustainable development is important but without clear targets an unfocused term like “liberty” or “justice”. It has also been described as a “dialogue of values that challenge the sociology of development”.

The resiliency of an ecosystem, and thereby, its sustainability, can be reasonably measured at junctures or events where the combination of naturally occurring regenerative forces (solar energy, water, soil, atmosphere, vegetation, and biomass) interact with the energy released into the ecosystem from disturbances.

A practical view of sustainability is closed systems that maintain processes of productivity indefinitely by replacing resources used by actions of people with resources of equal or greater value by those same people without degrading or endangering natural biotic systems. In this way, sustainability can be concretely measured in human projects if there is a transparent accounting of the resources put back into the ecosystem to replace those displaced. In nature, the accounting occurs naturally through a process of adaption as an ecosystem returns to viability from an external disturbance. The adaptation is a multi-stage process that begins with the disturbance event (earthquake, volcanic eruption, hurricane, tornado, flood, or thunderstorm), followed by absorption, utilization, or deflection of the energy or energies that the external forces created.

The history of sustainability traces human-dominated ecological systems from the earliest civilizations to the present time. This history is characterized by the increased regional success of a particular society, followed by crises that were either resolved, producing sustainability, or not, leading to decline. In early human history, the use of fire and desire for specific foods may have altered the natural composition of plant and animal communities. Between 8,000 and 10,000 years ago, agrarian communities emerged which depended largely on their environment and the creation of a “structure of permanence.”

In the 21st century, there is increasing global awareness of the threat posed by the human greenhouse effect, produced largely by forest clearing and the burning of fossil fuels.

Sustainability is studied and managed over many scales (levels or frames of reference) of time and space and in many contexts of environmental, social and economic organization. The focus ranges from the total carrying capacity (sustainability) of planet Earth to the sustainability of economic sectors, ecosystems, countries, municipalities, neighborhoods, home gardens, individual lives, individual goods and services, occupations, lifestyles, behavior patterns and so on. In short, it can entail the full compass of biological and human activity or any part of it.

A major driver of human impact on Earth systems is the destruction of biophysical resources, especially, the Earth’s ecosystems. The environmental impact of a community or of humankind as a whole depends both on population and impact per person, which in turn depends in complex ways on what resources are being used, whether or not those resources are renewable, and the scale of the human activity relative to the carrying capacity of the ecosystems involved. Careful resource management can be applied at many scales, from economic sectors like agriculture, manufacturing and industry, to work organizations, the consumption patterns of households and individuals and to the resource demands of individual goods and services.

Sustainability measurement is a term that denotes the measurements used as the quantitative basis for the informed management of sustainability. The metrics used for the measurement of sustainability (involving the sustainability of environmental, social and economic domains, both individually and in various combinations) are evolving: they include indicators, benchmarks, audits, sustainability standards and certification systems like Fairtrade and Organic, indexes and accounting, as well as assessment, appraisal and other reporting systems. They are applied over a wide range of spatial and temporal scales.

Emerging economies like those of China and India aspire to the living standards of the Western world as does the non-industrialized world in general. It is the combination of population increase in the developing world and unsustainable consumption levels in the developed world that poses a stark challenge to sustainability.

As always, population growth has a marked influence on levels of consumption and the efficiency of resource use. The sustainability goal is to raise the global standard of living without increasing the use of resources beyond globally sustainable levels; that is, to not exceed “one planet” consumption. Information generated by reports at the national, regional and city scales confirm the global trend towards societies that are becoming less sustainable over time.

At a fundamental level energy flow and biochemical cycling set an upper limit on the number and mass of organisms in any ecosystem. Human impacts on the Earth are demonstrated in a general way through detrimental changes in the global biogeochemical cycles of chemicals that are critical to life, most notably those of water, oxygen, carbon, nitrogen and phosphorus

Kathy Kiefer

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s